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1 INTRODUCTION

1 Introduction
The subject of this thesis, pseudocycles, can be understood as a way of conceptualizing singular
homology with integer coefficients, complete with intersection product, in the case of smooth
manifolds. They are an interesting alternative perspective on homology, since elements in the
pseudocycle groups of a manifold M are represented by smoooth maps from a smooth oriented
manifold without boundary into M with the definition of the intersection product relying solely
on the theory of smooth manifolds and not needing any algebraic topology. So we get a theory
that is somewhat closer to our intuition, but isomorphic to integral homology according to the
results of [Zin08].

Before we introduce pseudocycles themselves, it will be in order to talk about some pre-
liminaries and general concepts from differential topology which will turn out to have special
relevance to the theory of pseudocycles: The concept of transversality in section 2.1, and the
idea of associating orientations to smooth manifolds via their tangent spaces in section 2.2. Af-
ter these concepts are established, section 3 will start with the basic definitions of pseudocycle
theory and the computation of the zero-dimensional pseudocycle groups of any smooth manifold,
before turning to the intersection product in 3.2 and then using this new tool to compute the
1-dimensional pseudocycle group of the torus T2 in section 3.3.

Finally, in section 3.4.1 we will describe how every integral homology class can be presented as
a bordism class of pseudocycles via a natural homomorphism respecting the intersection product,
and in section 3.4.2 we will sketch the rough idea of the reverse homomorphism.

Remark. All manifolds spoken of in this thesis are assumed to be smooth and paracompact. A
manifold M is called paracompact if every open cover M ⊆

⋃
i∈I Uj has a locally finite open

refinement. An open refinement of an open cover is a new open cover M ⊆
⋃
j∈J Vj such that

for any j ∈ J , there exists i ∈ I such that Vj ⊆ Ui. And an open cover is said to be locally
finite if every point in M has a neighborhood which intersects only finitely many sets in the
cover.

When a homology group Hd(M) of a space M is mentioned in this thesis, it is always im-
plied that we are speaking about homology with integer coefficients Hd(M ;Z). Maps between
manifolds are assumed to be smooth, unless otherwise specified.
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2 TRANSVERSALITY AND ORIENTATIONS

2 Transversality and Orientations

2.1 Transversality
Transversality is going to be crucial in the definition of the intersection product on pseudocycle
groups, which will be discussed in section 3.2. As we will see, transversality is the natural
generalization of the idea of a regular value to submanifolds of dimensions greater than zero.

Definition 2.1. Suppose X, Y are manifolds. A smooth map f : X → Y is called transverse
to a submanifold Z ⊂ Y if the following holds for all x ∈ f−1(Z):

Im(dfx) + Ty(Z) = Ty(Y ).

We write f −t Z.

The meaning of transversality becomes clear when we consider the following central theorem:

Theorem 2.1. If X, Y are manifolds and f : X → Y a smooth map which is transverse to a
submanifold Z ⊂ Y , then its preimage f−1(Z) is a submanifold of X, and the codimension of
f−1(Z) in X is equal to the codimension of Z in Y .

Proof. For any x ∈ f−1(Z), Z is cut out by l independent functions (gi : Y → R)1≤i≤l in an open
neighborhood U of y = f(x) (cf. [GP74], p. 24); that is, there is a collection of l independent
maps gi : U → R (where l is the codimension of Z in Y ) such that Z ∩ U is the zero set of the
maps g1, . . . , gl. Combining these maps into one, we define a map g : U → Rl as the submersion
(g1, . . . , gl).

Now, if 0 should turn out to be a regular value of (g ◦ f) : X → Rl, the “Preimage Theorem”,
which is a direct consequence of the inverse function theorem (cf. [GP74], p. 21) would guarantee
that (g ◦ f)−1(0) is a submanifold with codimension l in X.

Zero is a regular value of (g ◦ f) precisely if d(g ◦ f)x = dgy ◦ dfx : Tx(X)→ Rl is surjective.
We know that dgy is a surjective linear transformation, and its kernel is precisely Ty(Z) (cf.
[GP74], 24). So if, as our definition of transversality demands, Im(dfx) is at least as big as the
complement of Ty(Z) in Ty(Y ), we can rest assured that d(g ◦ f)x is surjective, and thus that 0
is a regular value, and therefore that f−1(Z) is a submanifold with codimension l.

Remark. If Z is a single point z, we will have Ty(Z) = 0 ⊂ Ty(Y ) and thus f −t z exactly if
dfx : Tx(X) → Ty(Y ) is surjective, which is to say that z is a regular value of f . So regular
values are just a special case of transverse submanifolds.

In the case where X is a manifold with boundary, the following theorem holds, which is
mentioned without proof here; for details on the proof, we refer to page 61 of [GP74]:

Theorem 2.2. If X is a manifold with boundary, Y a manifold without boundary, and f : X → Y
a smooth map with both f : X → Y and ∂f : ∂X → Y (where ∂f := f|∂X) transverse to a
submanifold without boundary Z ⊂ Y , then f−1(Z) is a manifold with boundary,

∂(f−1(Z)) = f−1(Z) ∩ ∂X,

and the codimension of f−1(Z) in X is equal to the codimension of Z in Y .

�
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2.1 Transversality 2 TRANSVERSALITY AND ORIENTATIONS

Building on this definition of transversality as a relation between a map and a submanifold, this
notion can be extended to two submanifolds X ⊂ Y and Z ⊂ Y , by simply considering the
inclusion map iX : X ↪−→ Y .

A point x ∈ X is in the preimage i−1
X (Z) if and only if x ∈ X ∩ Z, and the derivative

d(iX)x : Tx(X) → Tx(Y ) is just the inclusion of Tx(X) into Tx(Y ). Thus iX −t Z if and only if
for all x ∈ X ∩ Z the following equation holds:

Tx(X) + Tx(Z) = Tx(Y ) (2.1)

Definition 2.2. Two submanifolds X ⊂ Y and Z ⊂ Y are called transverse, if (2.1) holds for
all x ∈ X ∩ Z. We write X −t Z

An application of Theorem 2.1, together with a few arithmetic transformations gives us:

Theorem 2.3. The intersection of two transverse submanifolds X ⊂ Y und Z ⊂ Y is itself a
submanifold, and

Codim(X ∩ Z) = Codim(X) + Codim(Z)

�

Remark. Two submanifolds whose dimensions are in sum not at least equal to the dimension of
the ambient manifold can only be transverse, according to our definition, if their intersection is
empty.

So we now know what it means for a map and a submanifold to be transverse, and what it
means for two submanifolds to be transverse; there is one more notion of transversality that we
are going to need, and that is transversality of two maps.

Definition 2.3. For two maps f : X → M and g : Y → M with the same manifold as their
codomain, we say that f and g are transverse (and we write f −t g) if the map f × g : X×Y →
M ×M is transverse to the diagonal ∆ ⊂M ×M .

Another perspective on transversality of two maps, which works without mentioning the
diagonal, is given by the following Lemma.

Lemma 2.4. Two maps f : X → M and g : Y → M are transverse if and only if for all
(x, y) ∈ X × Y such that f(x) = g(y) =: p, the following holds:

Im(dfx) + Im(dgy) = Tp(M)

Proof. Say that the manifold M is of dimension k, X is of dimension m, Y is of dimension n
and that z = (x, y) ∈ X × Y is a point such that f(x) = g(y) =: p, and let q := (p, p) ∈M ×M .

First, consider the intersection Im(d(f × g)z) ∩ Tq(∆). It consists precisely of the points
w ∈ Tq(M ×M) such that there is u ∈ Rm and v ∈ Rn with dfx(u) = dgy(v) = w. So there is an
isomorphism between Im(d(f × g)z) ∩ Tq(∆) and Im(dfx) ∩ Im(dgy).

Then, notice that dim(Im(dfx)) + dim(Im(dgy)) = dim(Im(dfx)× Im(dgy)), and that
dim(Tq(∆)) = k. So

dim(Im(dfx)) + dim(Im(dgy)) = dim(Tp(M)) (2.2)
⇐⇒ dim(Im(dfx)× Im(dgy)) + dim(Tq(∆)) = dim(Tq(M ×M)) (2.3)
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2.1 Transversality 2 TRANSVERSALITY AND ORIENTATIONS

Putting this together and using some of the things we know from Linear Algebra, we get:

dim(Im(d(f × g)z) + Tq(∆)) = 2k (i.e. f −t g)
⇐⇒ dim(Im(d(f × g)z))︸ ︷︷ ︸

=dim(Im(dfx))+dim(Im(dgy))

+k − dim(Im(d(f × g)z) ∩ Tq(∆)︸ ︷︷ ︸
=dim(Im(dfx)∩Im(dgy))

) = 2k

⇐⇒ dim(Im(dfx)) + dim(Im(dgy))− dim(Im(dfx) ∩ Im(dgy)) = k

⇐⇒ dim(Im(dfx)× Im(dgy)) + dim(Tq(∆))− dim(Im(dfx) ∩ Im(dgy)) = 2k (by (2.2))
⇐⇒ dim(Im(dfx)) + dim(Im(dgy))− dim(Im(dfx) ∩ Im(dgy)) = k

⇐⇒ dim(Im(dfx) + Im(dgy)) = k

which means Im(dfx) + Im(dgy) is a k-dimensional subspace of Tp(M), i.e. is the entire space
Tp(M).

Lemma 2.5. If f1 : X1 →M and f2 : X2 →M are transverse, then

{(x, y) ∈ X1 ×X2 | f1(x) = f2(y)} ⊂ X1 ×X2

is a smooth submanifold in X1 ×X2 of dimension dim(X1) + dim(X2)− dim(M).

Proof. This is a straightforward application of Theorem 2.1 with Z being ∆ ⊂ M × M and
f = f1 × f2 : X1 ×X2 →M ×M .

We will discuss one more interesting quality of transversality, namely that it is a generic
quality: For any smooth map f : X → Y and any submanifold Z ⊂ Y , it is possible to deform f
by an arbitrarily small amount to make it transverse to Z. To be able to say what this means,
we will define the notions of meager and comeager subsets in the following way:

Definition 2.4. A subset S of a topological space X is called meager if it is a countable union
of nowhere dense subsets (i.e. sets whose closure has empty interior).

Definition 2.5. A subset S of a topological space X is called comeager or residual if it is
the complement of a meager set (or, equivalently: if it contains a countable intersection of open
dense sets).

We are also going to introduce the symbol

−tr (X,Y ;Z) := {f ∈ Cr(X,Y ) : f −t Z}

to denote all the Cr-maps from X to Y which are transverse to Z, where X, Y and Z ⊂ Y are
manifolds.

To make the notion of deforming by an arbitrarily small amount precise, we will further-
more have to introduce a topology on the set of smooth maps C∞(X,Y ). The topology we
are going to choose is the so called strong topology. We will first describe topologies on the
spaces Cr(X,Y ) (and denote the resulting topological spaces by CrS(X,Y )) and then define the
strong topology on C∞(X,Y ) to be the union of the topologies induced by the inclusion maps
C∞(X,Y ) ↪→ Cr(X,Y ).

So, let us now define a base for the strong topology on Cr(X,Y ):
Let Φ = {φi, Ui}i∈J be a locally finite set of charts on X, i.e. charts such that every point in

M has a neighborhood that has nonempty intersection with only finitely many of the U ′is. (We
can always find such a set of charts because we assumed X to be paracompact.)
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2.1 Transversality 2 TRANSVERSALITY AND ORIENTATIONS

Let K = {Ki}i∈J be a family of compact sets such that for every i ∈ J , Ki ⊂ Ui.
Let Ψ = {ψi, Vi}i∈J be a set of charts on Y .
And let ε = {εi}i∈J be a family of positive numbers.
Now, for f ∈ Cr(X,Y ) such that f(Ki) ⊂ Vi, a neighborhood of f

N (f ; Φ,Ψ,K, ε)

is defined to be the set of maps g ∈ Cr(X,Y ) such that for all i ∈ J, x ∈ φi(Ki) and 0 ≤ k ≤ r:

g(Ki) ⊂ Vi

and

‖dk(ψi ◦ f ◦ φ−1
i )x − dk(ψi ◦ g ◦ φ−1

i )x‖ < εi.

The strong topology on Cr(X,Y ) is generated by these sets as a base. And as mentioned before,
the strong topology on C∞(X,Y ) is defined to be the union of the topologies induced by the
maps C∞(X,Y ) ↪−→ Cr(X,Y ). (Cf. [Hir94] p. 35 and 74 on this.)

We can now state the Transversality Theorem (cf. [Hir94], p. 74):

Theorem 2.6. Let X,Y be smooth manifolds and Z ⊂ Y a submanifold. Then −tr (X,Y ;Z) is
residual (and therefore dense) in Cr(X,Y ) for the strong topology.

Proof. Cf. §3.2 of [Hir94].

A simpler version, which can be proven here, is the parametric transversality theorem:

Theorem 2.7. If X and S are smooth manifolds, and F : X × S → Y is a smooth map of
manifolds (i.e. a map such that we get a smoothly varying family of maps fs(x) = F (x, s)
indexed by a parameter s ranging over S), where all involved manifolds have empty boundary,
and if Z is a submanifold of Y without boundary, and F is transverse to Z, then the set

−t (F ;Z) := {s ∈ S : Fs
−t Z}

is residual (and therefore dense).1

Proof. Let W := F−1(Z) ⊂ X × S. Since F −t Z, W is a submanifold. Let π : X × S → S be
the projection. We want to show that fs −t Z holds whenever s ∈ S is a regular value of the
restriction of the projection to W , π|W : W → S. For if that is the case, Sard’s Theorem (for
example in the version presented in §3.1 of [Hir94], there called "Morse-Sard Theorem") says
that the set of such s is residual. (Which implies also that it is dense.)

So, assume fs(x) = z ∈ Z. This is the same as saying F (x, s) = z, and since F −t Z we
therefore know that

dF(x,s)T(x,s)(X × S) + Tz(Z) = Tz(Y )

and so for an arbitrary vector a ∈ Tz(Y ), a vector b ∈ T(x,s)(X × S) exists such that

dF(x,s)(b)− a ∈ Tz(Z).

To show fs
−tx Z (that is, d(fs)x(Tx(X)) + Tz(Z) = Tz(Y )), we now need to find a vector

v ∈ Tx(X) such that dfs(v)− a ∈ Tz(Z).
1For this theorem and its proof, cf. [GP74], p. 68 f.
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2.2 Orientations on Smooth Manifolds 2 TRANSVERSALITY AND ORIENTATIONS

We use the following fact about tangent spaces:

T(x,s)(X × S) = Tx(X)× Ts(S)

(this is exercise 1.2.9 in [GP74]) to write b = (bX , bS) for vectors bX ∈ Tx(X) and bS ∈ Ts(S).
In the case bS = 0 we immediately get

dF(x,s)(bX , 0) = dfs(bX)

since the restriction of F to X × {s} is exactly fs.
In the case bS 6= 0, we consider the projection. We know that

dπ(x,s) : Tx(X)× Ts(S)→ Ts(S)

is just the projection of vector spaces (this is, again, exercise 1.2.9 in [GP74]). And under the
assumption that s ∈ S is a regular value of π|W ,

dπ(x,s) : T(x,s)(W )→ Ts(S)

is surjective, so there is a vector of the form (w, bS) in T(x,s)(W ). Because F maps W to Z,
dF(x,s)(w, bS) ∈ Tz(Z), so we can take v = bx−w ∈ Tx(X) to be the desired vector, since in this
case:

dfs(v)− a = dF(x,s)((bX , bS)− (w, bs))− a = dF(x,s)(bX , bS)− a︸ ︷︷ ︸
∈Tz(Z)

− dF(x,s)(w, bS)︸ ︷︷ ︸
∈Tz(Z)

This concludes the proof.

2.2 Orientations on Smooth Manifolds
2.2.1 Basic Idea

(This entire section is based on [GP74], §3.2). If we consider a finite-dimensional vector space
V and two ordered bases for that space, β = {v1, . . . vn} and β̃ = {ṽ1, . . . , ṽn}, there is a unique
vector space isomorphism A : V → V such that β̃ = Aβ. This allows us to define an equivalence
relation on the set of bases of V , namely by considering the determinant of the base change
isomorphism. If detA > 0 we will say that β and β̃ have the same orientation, if detA < 0
that they have opposite orientation. Because det(AB) = det(A) det(B), this indeed defines
an equivalence relation partitioning the set of ordered basis of V into two equivalence classes.
An orientation is now an arbitrary choice to call one equivalence class positively oriented and
the other negatively oriented. (Choosing one oriented basis and calling it positively oriented or
negatively oriented determines the orientation of the vector space completely. For example, for
standard Euclidean space we will give it a standard orientation by calling the standard oriented
basis positively oriented.)

Remark. As one easily verifies through the basic properties of the determinant, switching two
vectors in an ordered basis, or multiplying one vector in the basis by a negative number, produces
a basis with opposite orientation.

Building on this definition of the orientation of a vector space, we can define an orientation of
a smooth manifold X as a smooth choice of orientations for all the tangent spaces Tx(X). That
is, a choice of orientations such that at every x ∈ X there is a local parametrization φ : U → X
such that dφu : U → Tφ(u)(X) is orientation-preserving at every point u ∈ U .

7



2.2 Orientations on Smooth Manifolds 2 TRANSVERSALITY AND ORIENTATIONS

Clearly this will not work in the case of zero-dimensional manifolds (i.e. discrete sets of
points); but in this case, we can simply assign an orientation (+) or (−) to each point x ∈ X
without having to worry about smoothness.

An oriented manifold is a manifold together with a fixed smooth orientation; reversing the
orientation on an oriented manifold X will produce another oriented manifold, which we will
denote by −X.

2.2.2 Induced Orientations

We will now discuss some ways in which manifolds that arise from oriented manifolds by taking
the product, the transverse intersection, the boundary, or the preimage of a transverse map can
be assigned orientations depending on the orientations of the original manifolds in a natural way.

Direct Sum and Product Orientation If a vector space V = V1 ⊕ V2 is the direct sum of
two oriented vector spaces, we define the induced direct sum orientation on V as follows: Let
β1 and β2 be ordered bases for V1 and V2 respectively, and β = (β1, β2) the combined ordered
basis for V ; then we say that

sign(β) := sign(β1) sign(β2).

This lets us define an orientation on the product of two oriented manifolds X and Y as well,
since for every point (x, y) ∈ X × Y :

T(x,y) = Tx(X)× Ty(Y )

and we can identify Tx(X) × Ty(Y ) with the direct sum Tx(X) ⊕ Ty(Y ) (for a vector vi ∈ β1,
define a vector ṽi as

ṽi = (vi, 0, . . . , 0︸ ︷︷ ︸
dimY zeros

)

to get a vector in the basis for Tx(X) × Ty(Y ); and we can similarly define w̃i := (0, wi) for
vectors wi ∈ β2.) So defining a direct sum orientation has also given us a notion of product
orientation. For the ordered basis (β1 × 0, 0× β2) for Tx(X)× Ty(Y ) = T(x,y)(X × Y ), we set
its sign to be sign(β1) sign(β2).
Remark. Note that the induced orientation on X×Y will be opposite to the induced orientation
on Y ×X if and only if X and Y are both of odd dimension (in this case the two ordered bases
(β1, β2) and (β2, β1) turn into each other by an odd number of switches of vectors, so again by
the basic property of the determinant by which each switch of matrix columns flips its sign, in
this case these bases will have opposite orientation).

Intersection Orientation (This paragraph is based on [Wen19], p. 358.) If V1, V2 ≤ V are
oriented linear subspaces of a vector space V such that V1 + V2 = V , with codimV1 = k and
codimV2 = l, then codim(V1 ∩ V2) = k + l, so we can select a basis for V1 ∩ V2:

β = (a1, . . . , an−(k+l)).

If V1 ⊂ V2 or vice versa, this basis will be a basis of V1 (or V2) and thus already have an
orientation; otherwise, there are vectors v(1)

1 , . . . , v
(1)
l in V1 and v(2)

1 , . . . v
(2)
k in V2 such that

β1 = (a1, . . . , an−(k+l), v
(1)
1 , . . . , v

(1)
l ) is positively oriented as a basis of V1

β2 = (a1, . . . , an−(k+l), v
(2)
1 , . . . v

(2)
k ) is positively oriented as a basis of V2

8



2.2 Orientations on Smooth Manifolds 2 TRANSVERSALITY AND ORIENTATIONS

and

βV = (a1, . . . , an−(k+l), v
(1)
1 , . . . , v

(1)
l , v

(2)
1 , . . . v

(2)
k ) is a basis of V.

Which has a sign sign(βV ) as a basis of the oriented vector space V , and we set

sign(β) := sign(βV ).

Remark. The so induced orientation on V ∩W will be opposite to that on W ∩ V if and only if
both V and W have odd codimensions.

If X and Z are transverse submanifolds of Y , then Tx(X) + Tx(Z) = Ty(Y ), and we can
define an orientation on the manifold X ∩ Z in this way, since Tx(X ∩ Z) = Tx(X) ∩ Tx(Z).

Boundary Orientation If X is an oriented manifold of dimension n, then ∂X will be a
manifold without boundary of dimension n − 1. To define an orientation on ∂X, consider a

local parametrization φ : U → X around a point x ∈ ∂X (where U
open
⊆ Hn) and assume

φ(0) = x. Then dφ0 : Rn → Tx(X) is an isomorphism, and we can define the upper half
space Hx(X) ≤ Tx(X) to be the image of Hn under dφ0. This is independent of the choice of
parametrization.

The codimension of Tx(∂X) in Tx(X) is one – so there are exactly two unit vectors in Tx(X)
that are orthogonal to Tx(∂X). One lies in Hx(X), and the other one does not. Call the latter
one the outward unit normal vector to the boundary, denoted by nx. We now give Tx(∂X) an
orientation by declaring for an ordered basis β = (v1, . . . , vn−1) for Tx(X) that sign(β) is the
sign of (nx, β) = (nx, v1, . . . , vn−1) as a basis for Tx(X) (on which an orientation is already in
place).

An example that is going to have some relevance in section 3.1 is the boundary of the product
space of a manifold X with the unit interval I, so let’s have a look:

Example. For a manifold without boundary X, I ×X is a manifold with boundary, and for all
t ∈ I, Xt := {t} ×X is naturally diffeomorphic to X. The boundary of I ×X is X1 qX0. So
what are the induced orientations on the two disconnected boundary components? For x ∈ X1,
the outward-oriented normal vector n(1,x) is

(1, 0) ∈ T1(I)× Tx(X).

Ordered bases of T(1,x)(X1) have the form (0 × β) (where β is an ordered basis of Tx(X)).
So our definition of the boundary orientation says that sign(0× β) as a basis of T(1,x)(X1) is the
sign of (n(1,x), 0× β) = (1× 0, 0× β) as a basis of T(1,x)(I ×X).

Our definition of the product orientation says that sign(1 × 0, 0 × β) = sign(1) sign(β) =
sign(β); so the boundary orientation agrees with the orientation of X1 as a copy of X.

How about X0? For x ∈ X0, the outward pointing normal vector is n(0,x) = (−1, 0). So, as
a boundary orientation, the sign associated to the basis 0× β for T(0,x)(X0) is

sign(−1× 0, 0× β) = sign(−1) sign(β) = − sign(β)

– so on X0, the induced boundary orientation is opposite to the orientation of X0 as a copy of
X. So:

∂(I ×X) = X1 q−X0

9



2.2 Orientations on Smooth Manifolds 2 TRANSVERSALITY AND ORIENTATIONS

(We will not write “∂(I ×X) = X1 −X0” as some authors do, but reserve the notation A − B
for two sets A,B for denoting the subset of A consisting of points that are not in B).

Figure 1

Source: [GP74], p. 98

Remark. In the case dim(X) = 1 (and consequently dim(∂X) = 0) the orientation of a point
x ∈ ∂X will simply be the sign of (nx) as a basis of Tx(X).

Preimage Orientation Let f : X → Y be a smooth map with f −t Z, where X,Y, Z are
oriented manifolds and Z ⊂ Y .

We now want to define an orientation on the manifold S := f−1(Z). To do this, consider the
following: If f(x) = z ∈ Z, then Tx(S) is the preimage of Tz(Z) under the linear transformation
dfx : Tx(X)→ Tz(Y ) (exercise 1.5.5 in [GP74]). Now choose any subspace H in Tx(X) such that

H ⊕ Tx(S) = Tx(X)

(an obvious choice would be for example the orthogonal complement of Tx(S) in Tx(X), Nx(S;X)).
Now, by the rules of the direct sum orientation, a choice of orientation for H would immediately
also determine an orientation on Tx(S), since for ordered bases βH , βX , βX for the three involved
spaces,

sign(βH) sign(βS) = sign(βX) ⇐⇒ sign(βS) = sign(βH) sign(βX)

So the only question that remains is: How do we choose an orientation for H? Because of
transversality, we have

dfxTx(X) + Tz(Z) = Tz(Y )

and, because of how we chose H, and the fact that df−1
x (Tz(Z)) = Tx(S),

dfxH ⊕ Tz(Z) = Tz(Y )

so that we can again use the rules of the direct sum orientation to derive an orientation on dfxH
from the orientations of Tz(Z) and Tz(Y ), which in turn gives us an orientation on H over the
isomorphism dfx.

In the case where dimX + dimZ = dimY , we will have dim f−1(Z) = 0, so it will be a finite
number of points. For a point x ∈ f−1(Z) (with f(x) = z ∈ Z), the fact that dimensions add
up, together with f −t Z gives a direct sum

dfxTx(X)⊕ Tz(Z) = Tz(Y ).

Now, the orientation of x is positive if the orientations of dfxTx(X) and Tz(Z) (in that order)
“add up” to the orientation on Ty(Y ), and negative if not.

10



3 PSEUDOCYCLES

3 Pseudocycles

3.1 Pseudocycles and Bordism
Before we can introduce the concept of a pseudocycle, we need the notion of the omega-limit set
of a smooth map.

Definition 3.1. The omega-limit set of a smooth map f : V → M defined on a (possibly
noncompact) manifold V is

Ωf := {lim f(xn) | sequences (xn)n∈N ⊂ V with no limit points} ⊂M

With this definition established, we can define what a pseudocycle is:

Definition 3.2. Let M be a smooth manifold, and V a smooth, oriented manifold of dimension
d, with ∂V = ∅. Let f : V →M be a smooth map such that the closure of its image, f(V ) ⊂M
is compact and dim Ωf ≤ d − 2 (i.e. Ωf is contained in a countable union of images of smooth
maps whose domains are manifolds of dimension at most d − 2). Then f : V → M is called a
d-dimensional pseudocycle in M.

We want to use the idea of pseudocycles to define a functor from the category of smooth
manifolds to the category of abelian groups that is similar (hopefully isomorphic) to integral
homology. As it stands, there are way too many pseudocycles. We will therefore now define an
equivalence relation on this set, the notion of bordism between pseudocycles. Two d-dimensional
pseudocycles shall be called bordant if an appropriate (d+ 1)-dimensional smooth oriented man-
ifold with boundary exists such that its boundary is the disjoint union of the two pseudocycles
with specified appropriate orientations, and we can define a smooth map on it whose codomain
is M and which restricts to the two individual pseudocycle maps on the boundary:

Definition 3.3. A bordism between two d-dimensional pseudocycles f+ : V+ → M and f− :
V− →M is a smooth map f : V →M where V is a smooth oriented manifold of dimension d+1
such that ∂V = (−V−)q V+ and f |V±= f±, the closure of its image, f(V ) ⊂M is compact and
the dimension of its omega-limit Ωf is at most d− 1.

Lemma 3.1. The bordism-relation is an equivalence relation.

Proof. Clearly the definition of bordism is symmetric.
Every pseudocycle f1 : V1 → M is bordant to itself by the bordism V = I × V1 with

f : I × V1 →M given by f(t, v) = f(v).
If f1 : V1 → M is bordant to f2 : V2 → M via a manifold V (1), and f2 is bordant to

f3 : V3 → M via V (2), then a bordism between f1 and f3 can be constructed by gluing V (1)

to V (2) along V2. The map f :
(
V (1) ∪ V (2)

)/
V2 → M given by the two bordism maps on the

two components will be continuous; and by Theorem 2.6 in [Hir94], there exists a smooth map
arbitrarily close to f in a neighborhood of V2 in the strong topology, and one will be able to
construct a smooth map that agrees with f1 and f2 respectively on the boundary.

Definition 3.4. We can now define the d-dimensional pseudocycle-group HΨ
d (M) as fol-

lows:

HΨ
d (M) = {d-dimensional pseudocycles in M}/ ∼

Where (f1 : V1 →M) ∼ (f2 : V2 →M) if there exists a bordism between f1 and f2. On this set,
the structure of an abelian group can be defined by taking disjoint union to be addition and the
empty pseudocycle (that is, the pseudocycle with V = ∅) to be the neutral element.

11



3.1 Pseudocycles and Bordism 3 PSEUDOCYCLES

Lemma 3.2. For every pseudocycle f : V → M , the inverse element of [f ] ∈ HΨ
d (M) is

represented by the same map f : −V →M with the orientation of the domain reversed.

Proof. Define Ṽ = V × I and f : Ṽ →M with f(v, x) = f(v). Independently of the orientation
we choose for Ṽ , the induced orientation on the two non-empty connected components of its
boundary (which are two copies of V ) will be the orientation of V on one and the opposite
orientation on the other (cf. section 2.2.2).

∂Ṽ = V q−V q ∅ = (V q−V )q ∅

Thus we have contructed a boridsm between V q−V and the empty pseudocycle.

Lemma 3.3. For every smooth connected manifold M ,

HΨ
0 (M) ∼= Z;

or, more generally, for every smooth manifold M :

HΨ
0 (M) ∼=

⊕
π0(M)

Z

where π0(M) denotes the set of path components of M .

Proof. The pseudocycles of dimension zero are just the maps f : V →M where V is a compact
oriented 0-manifold, i.e. a finite set of discrete points, to each of which a sign (+) or (−) has
been associated. The other criteria mentioned in the definition of pseudocycles are trivially true
for any such manifold, since manifolds of negative dimension are always empty.

For every path componentMi ofM , we can now define a homomorphism φi from the bordism
classes of the pseudocycle HΨ

0 (M) to the integers. Say that for a bordism class [V ] ∈ HΨ
0 (M)

represented by f : V → M , Pi ⊂ V is the submanifold consisting of those points in V that are
mapped into Mi by f . Then define

φi([V ]) = #(points with positive orientation in Pi)
−#(points with negative orientation in Pi).

Obviously φi([V ]q [W ]) = φi([V ])+φi([W ]). The fact that this homomorphism is well defined is
best seen in a concrete example. Say Pi consists of 3 positively and 2 negatively oriented points.
Then there is a 0-manifold, consisting of one positively oriented point p̃, which is bordant to these
five points. It looks like this: Take the 1-manifold consisting of three copies of the (closed) unit
interval, which is mapped into Mi in such a way that it takes the form of three paths, one from
p̃ to one of the positively oriented points in the image of Pi, and two leading from a negatively
oriented point in the image of Pi to one that is positively oriented. Then the boundary of this
manifold will be −p̃q Pi. So p̃ is bordant to Pi.

12



3.2 The Intersection Product 3 PSEUDOCYCLES

Figure 2

Bordism between P and p̃

This gives us for every path component Mi of M a homomorphism from HΨ
0 (M) to the

integers. Since the only connected 1-manifold with two boundary components is the closed unit
interval, it is easy to see that the combination of these homomorphisms is indeed an isomorphism
from HΨ

0 (M) to
⊕

π0(M) Z.

Remark. This already shows that HΨ
0 (M) ∼= H0(M ;Z). The isomorphism holds in general in

all dimensions, as demonstrated in [Zin18]: HΨ
d (M) ∼= Hd(M ;Z). We will come back to this in

section 3.4.

3.2 The Intersection Product
We now want to introduce a product on the pseudocycle groupsHΨ

∗ (M), the intersection product.
To do this, we first have to talk about a property that a pair of two pseudocycles can have, namely
that of strong transversality of pseudocycles:

Definition 3.5. Two pseudocycles f1 : V1 → M and f2 : V2 → M are called strongly trans-
verse if there exist maps e1 : U1 → M and e2 : U2 → M with Ωf1 ⊂ e1(U1) and Ωf2 ⊂ e2(U2)
such that dim(Ui) ≤ dim(Vi)− 2 for i = 1, 2 and

f1
−t f2, f1

−t e2, e1
−t f2, e1

−t e2.

The definition of the intersection product of two bordism classes of pseudocycles [f1] and
[f2] is going to make sense only if we can find representatives that are strongly transverse, since
we will need transversality to construct a new manifold that can serve as the domain for the
new “product”-pseudocycle. The following two Lemmata guarantee that such representatives can
always be found:

Lemma 3.4. If f1 : V1 → M and f2 : V2 → M are two pseudocycles, then there is a comeager
set Diffreg(M,f1, f2) ⊂ Diff(M), such that for all φ ∈ Diffreg(M,f1, f2), f1 : V1 →M is strongly
transverse to φ ◦ f2 : V2 →M .

Proof. Since f1, f2 are pseudocycles, there are sets and maps e1 : U1 → M and e2 : U2 → M
such that dim(Ui) ≤ dim(Vi) − 2 and Ωfi ⊂ ei(Ui) for i = 1, 2. We show that there are four
comeager subsets D1, D2, D3, D4 of Diff(M) such that

∀φ ∈ D1 : f1
−t φ ◦ f2, ∀φ ∈ D2 : f1

−t φ ◦ e2, (3.1)
∀φ ∈ D3 : e1

−t φ ◦ f2 and ∀φ ∈ D4 : e1
−t φ ◦ e2 (3.2)

13



3.2 The Intersection Product 3 PSEUDOCYCLES

Then the intersection D :=
⋂

1≤i≤4Di will also be comeager, and for all φ ∈ D, f1 and φ ◦ f2

will be strongly transverse.
The proof of each of the four claims in 3.1 and 3.2 proceeds along similar lines, so we will

discuss only the first one explicitly.
Consider the map

m : V1 × V2 ×Diff(M)→M ×M
(v1, v2, φ) 7→ (f1(v1), φ(f2(v2))).

Unfortunately, Diff(M) can not be given the structure of a finite-dimensional smooth manifold,
so we are a bit out of our comfort zone - to make this proof precise, we would have to talk
about completions to Banach manifolds, which would demand a lengthy excursion into functional
analysis way beyond the scope of this thesis. We’ll just mention the following:

There is an infinite-dimensional version of the transversality theorem, which says

Theorem 3.5. Suppose that F : X × S → Y is a Ck map of C∞-Banach manifolds. Assume
that

1. X, S and Y are nonempty, metrizable C∞-Banach manifolds with chart spaces over a field
K.

2. The Ck-map F : X × S → Y with k ≥ 1 has y as a regular value.

3. For each parameter s ∈ S, the map fs(x) = F (x, s) is a Fredholm map, where indDfs(x) < k
for every x ∈ f−1

s ({y}).

4. The convergence limn→∞ sn = s on S and F (xn, sn) = y for all n imply the existence of a
convergent subsequence xn → x with x ∈ X

Then there exists an open, dense subset S0 of S such that y is a regular value of fs for each
parameter s ∈ S0. And for a fixed element s ∈ S0, if there is n ∈ N0 with indDfs(x) = n for all
x ∈ X such that fs(x) = y, then f−1

s ({y}) is either an n-dimensional Ck-Banach manifold or
empty.2

Without going to much into detail, we will just assume that

M := {(v1, v2, φ) | f1(v1) = φ(f2(v2))} ⊂ V1 × V2 ×Diff(M),

which is nothing else than the preimage of the diagonal ∆ ⊂M×M underm, is a manifold3. Then
Sard’s theorem (in Smale’s version, cf. [Sma65]), if applied to the restriction of the projection
map

π : V1 × V2 ×Diff(M)→ Diff(M)

toM, tells us that almost every point in Diff(M) is a regular value of π|M. So for almost every
φ ∈ Diff(M),

π−1
|M(φ) = (f1, φ(f2))−1(∆)× {φ},

which is clearly diffeomorphic to (f1, φ(f2))−1(∆), is a manifold.4

2Quoted here from [Wik]; a proof could be assembled from [Hir94] and [Sma65].
3This should be provable using Theorem 1.2 in Chapter XIV of [Lan93]
4This proof is a slight modification of the proof of Lemma 6.5.5 in [MS04].
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For the intersection product, we are going to define a new pseudocycle from two strongly
transverse pseudocycles, as described in the following Lemma:

Lemma 3.6. Let f1 : V1 → M and f2 : V2 → M be two strongly transverse pseudocycles of
dimensions d1 and d2, and let dim(M) = n.

Then V := (f1, f2)−1(∆) ⊂ V1 × V2 (where ∆ ⊂ M × M is the diagonal) is a manifold
without boundary of dimension (d1 +d2−n), and itself the domain of a pseudocycle f : V →M ,
[f ] ∈ HΨ

d1+d2−n(M) where f is defined via f(x1, x2) := f1(x1) = f2(x2). The bordism class of
this pseudocycle depends only on the bordism classes of f1 und f2 .

Proof. Lemma 2.5 says that P := (f1, f2)−1(∆) is a manifold of dimension d1 + d2 − n with
empty boundary. The closure of the image of f is contained in the closure of the image of f1,
which is compact; so f(P ) is also compact as a closed subset of a compact set.

It remains to be shown that Ωf is of dimension at most d1 + d2 − n− 2.
Take a sequence (x

(1)
n , x

(2)
n )n∈N which does not converge in V, but for which

y = limn→∞ f(x
(1)
n , x

(2)
n ) in M exists.

Case 1: x(i)
n does not converge in Vi, but x

(j)
n converges in Vj (where i, j ∈ {1, 2}, i 6= j.

Without loss of generality assume i = 1, j = 2). Then U∗ := (e1, f2)−1(∆) is a manifold of
dimension at most

dim(U1) + dim(V2)− dim(M) ≤ d1 + d2 − n− 2

and for the map f∗ : U∗ →M , f∗(x1, x2) = e1(x1) = f2(x2) we have y ∈ f∗(U∗). So in this case
dim Ωf ≤ d1 + d2 − n− 2 and we’re done.

Case 2: x(i)
n does not converge in Vi and x

(j)
n also does not converge in Vj . Then

y ∈ e1(U1) ∩ e2(U2) and since e1
−t e2, we can now define U∗ to be (e1, e2)−1(∆). It will now be of

dimension (d1+d2−n−4), and y will be contained in the image of the (d1 + d2 − n− 4)-dimensional
manifold U∗ under the map f∗(x1, x2) = e1(x1) = e2(x2).

What still remains to be shown is that the result depends only on the bordism classes of
the involved pseudocycles, so assume that f̃1 : Ṽ1 → M is bordant to f1 : V1 → M via a map
f

(b)
1 : V

(b)
1 → M where V (b)

1 is a (d1 + 1)-dimensional manifold with ∂V
(b)
1 = V1 q −Ṽ1 and

f
(b)
1 |V1

= f1 and f (b)
1 |Ṽ1

= f̃1. Because of the proof of Lemma 3.4, we may assume f (b)
1 and ∂f (b)

1

to be transverse to f2.
V

(b)
1 × V2 is a manifold with boundary, with

∂(V
(b)
1 × V2) = V1 × V2 q−Ṽ1 × V2

and

Ṽ := (f
(b)
1 , f2)−1(∆) ⊂ V (b)

1 × V2

is a manifold with boundary of dimension (d1 + 1 + d2 − n) = dimV + 1, and by Theorem 2.2,

∂Ṽ = Ṽ ∩ ∂(V
(b)
1 × V2)

= {(x, y) ∈ V (b)
1 × V2 | x ∈ (V1 q Ṽ1) ∧ f (b)

1 (x) = f2(y)}

now,

x ∈ V1 ∧ f (b)
1 (x) = f2(y) ⇐⇒ x ∈ V1 ∧ f1(x) = f2(y) ⇐⇒ (x, y) ∈ (f1, f2)−1(∆)
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and

x ∈ Ṽ1 ∧ f (b)
1 (x) = f2(y) ⇐⇒ x ∈ Ṽ1 ∧ f̃1(x) = f2(y) ⇐⇒ (x, y) ∈ (f̃1, f2)−1(∆)

so

∂Ṽ = (f1, f2)−1(∆)q−(f̃1, f2)−1(∆),

and Ṽ , with the map f̃ ′(x, y) = f
(b)
1 (x) is a bordism between the two pseudocycles

(f̃1, f2)−1(∆)→M and (f1, f2)−1(∆)→M .

Definition 3.6. For two strongly transverse pseudocycles fi : Vi → M of dimension di ≥ 0
(i = 1, 2) in an n-dimensional manifold M , their intersection product

f1 · f2

is defined according to the construction in Lemma 3.6.

Remark. The intersection product on the set of pseudocycles induces a homomorphism

HΨ
d1(M)⊗HΨ

d2(M)→ HΨ
d1+d2−dimM (M) : [f1]⊗ [f2] 7→ [f1] · [f2] (3.3)

according to the Lemma 3.6.
Lemma 3.4 tells us that this homomorphism does not depend on any assumptions about the

transversality of the pseudocycles involved.
In the case d1 +d2 = dimM , and ifM is connected, the isomorphism HΨ

0 (M) = Z mentioned
earlier (Lemma 3.3) gives the intersection number

[f1] · [f2] ∈ Z.

The so defined intersection number has a natural geometric interpretation as the signed
count of the points of intersection of two strongly transverse representatives f1 : V1 → M and
f2 : V2 →M , with the condition on the dimensions of Ωf1 and Ωf2 making sure that this count
is finite and invariant under bordism as proven in Lemma 3.6.

Lemma 3.7. ([f1] + [f2]) · [f3] = [f1] · [f3] + [f2] · [f3]

Proof. This is seen by writing out the definitions explicitly.

3.3 Some Example Computations on T2

We now want to see these definitions in action, and so we will perform some computations with
pseudocycles of dimension ≤ 1 on the torus T2, which will also demonstrate how the intersection
product can be used to compute the pseudocycle groups.

Since T2 is connected, we already know the zero-dimensional pseudocycle group: Lemma 3.3
tells us that HΨ

0 (T2) ∼= Z, generated by any map {p} → T2.
We are going to claim that HΨ

1 (T2) ∼= Z × Z. and that the two generators are obtained by
taking the two generators of the fundamental group π1(T2, p) (for a point p ∈ T2),

f1 : (S1, 1)→ (T2, p)

f2 : (S1, 1)→ (T2, p)
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(as shown in figure 3) and ignoring the base points. (It is easily seen that the bordism classes of
the pseudocycles so obtained do not depend on the chosen base point, since there exist obvious
bordisms that can be used to move the pseudocycles into place.)

Figure 3

f1 and f2 in T2

So first, we are going to show that there can be no other generators in HΨ
1 (T2), and then

that these two are in fact distinct, i.e. that there is no bordism between them.
The only one-dimensional manifolds without boundary modulo diffeomorphism are (0, 1) and

S1.
In order for any map f : (0, 1) → T2 to be a pseudocycle, Ωf would have to be empty

(since manifolds of dimension 1 − 2 = −1 are empty). But take a sequence (xn) in (0, 1) with
limn→∞ xn = 0. Since T2 is compact, limn→∞ f(xn) will exist in T2 and so Ωf will be nonempty
and of dimension 0. So the only 1-manifold that can serve as a domain for a pseudocycle in T2

is S1.
Any map f : (S1, 1) → (T2, p) which represents the neutral element in π1(T2), i.e. is ho-

motopic to a constant map, will be bordant to the empty pseudocycle, since any homotopy
H : (S1, 1)× I → (T2, p) with H(x, 0) = f(x) and H(x, 1) = p can be used to describe a bordism
from f : S1 → T2 to the empty pseudocycle. H will in general be continuous but not necessarily
smooth; but since C∞S (V,M) is dense in C0

S(V,N) (Theorem 2.6 in chapter 2 of [Hir94]), it can
be perturbed by an arbitrarily small amount into a smooth homotopy, so we may assume H to
be smooth. (The manifold of the bordism will be given by the manifold with boundary that is
one hemisphere of S2). So indeed there can be no generators in HΨ

1 (T2) other than f1 and f2.
In order to show that f1 and f2 do not represent the same element in HΨ

1 (T2), we are going
to compute the intersection product of f1 and f2.

First, note that [f1] · [f1] = 0. This is because there is a representative f ′1 of [f1] such that
Im f1 ∩ Im f ′1 = ∅, as shown in figure 4
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Figure 4

Bordism between f1 and f ′1

Analogously, [f2] · [f2] is also 0.
To compute [f1] · [f2] and [f2] · [f1], we will have to think about orientations a little more; so

let us consider T2 to be the product of two copies of S1:

T2 = S1
(1) × S

1
(2).

Say p has the coordinates p = (p(1), p(2)) with p(1) ∈ S1
(1) and p

(2) ∈ S1
(2); and say f1 maps S1 to

S1
(1) × {p

(2)} via (eiθ) 7→ (eiθ, p(2)) and similarly f2 : S1 → {p(1)} × S1
(2) via (eiθ) 7→ (p(1), eiθ).

Say furthermore that (eθ) is a positively oriented basis of Teiθ (S1), and define

v1 := d(f1)1(e0)

v2 := d(f2)1(e0)

Then (v1) will be a positively oriented basis for Tp(S1
(1)×{p

(2)}) and (v2) for Tp({p(1)} × S1
(2)),

and (v1, v2) forms a basis for Tp(T2) that is positively oriented according to the product orien-
tation.

To get an orientation on ∆ ⊂ T2 × T2, let i : T2 → T2 × T2; x 7→ (x, x) be the natural
diffeomorphism from T2 to ∆, and define ṽj = dip(vj) = (vj , vj) for j = 1, 2. Then (ṽ1, ṽ2) is a
positively oriented basis for T(p,p)(∆).

We have: (f1, f2)−1(∆) = (f1, f2)−1(p, p) = (1, 1).
So the domain of the pseudocycle [f1] · [f2] will be the single point (1, 1) ∈ S1 × S1. To get

its orientation, we look at the direct sum

d(f1, f2)(1,1)T(1,1)(S
1 × S1)⊕ T(p,p)(∆) = T(p,p)(T2 × T2)

(cf. the paragraph on the preimage orientation in section 2.2.2, specifically the case where the
preimage is of dimension zero.)

We have

d(f1, f2)(1,1)(e0, 0) = (v1, 0)

d(f1, f2)(1,1)(0, e0) = (0, v2)

The basis ((v1, 0), (0, v2), (v1, v1), (v2, v2)) is negatively oriented as a basis of T(p,p)(T2 ×T2).
This is so because the base transformation matrix from ((v1, 0), (0, v2), (v1, v1), (v2, v2)) to the
standard ordered basis of T(p,p)(T2×T2) in the product orientation, ((v1, 0), (v2, 0), (0, v1), (0, v2)),
is
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
1 0 1 0
0 0 0 1
0 0 1 0
0 1 0 1


which has determinant −1; so the orientation of (1, 1) as a 0-manifold is negative, and we get
the pseudocycle

([f1] · [f2]) : −(1, 1)→ T2

(1, 1) 7→ p

It is now easy to see that [f2]·[f1] will be the same map, but with the orientation of the domain
flipped; this is because while d(f1, f2)(1,1) : R2 → R2 is orientation preserving, d(f2, f1)(1,1) is
orientation reversing, and thus d(f2, f1)(1,1)T(1,1)(S

1 × S1) will have the opposite orientation of
d(f1, f2)(1,1)T(1,1)(S

1 × S1).

[f2] · [f1] = −[f1] · [f2]

Using this information about the intersection products, we can assure ourselves that [f1]−[f2]
is not zero in HΨ

1 (T1), because we can compute

([f1]− [f2]) · ([f1] + [f2]) = 2[f1] · [f2]

which is clearly not bordant to the empty pseudocycle (it is the disjoint union of two copies of
the negatively oriented point (1, 1), as we have just discovered). But if [f1]− [f2] were zero, then
([f1]− [f2]) · ([f1] + [f2]) would be zero also (see (3.3)).

So we have shown that HΨ
1 (T2) ∼= Z× Z.

�

3.4 Pseudocycles and Integral Homology
We now want to turn to a more elaborate investigation of the relationship between the pseu-
docycle groups and the integral homology groups. I have already given it away at the end of
section 3.1 – they are isomorphic. The scope of this thesis will unfortunately not permit a full
proof of this fact, for which one would have to turn to [Zin08]. We will, however, give a detailed
description of the homomorphism that takes integral cycles to pseudocycles in section 3.4.1, and
at least a brief sketch of other direction in section 3.4.2.

3.4.1 A Homomorphism Ψ : Hd(M)→ HΨ
d (M)

Theorem 3.8. For every positive integer d ≥ 0 there exists a natural homomorphism

Ψ : Hd(M)→ HΨ
d (M)

such that

1. For a pseudocycle f : V →M whose domain is a closed oriented manifold V , Ψ(f∗[V ]) = [f ]

2. For all A,B ∈ H∗(M), Ψ(A) ·Ψ(B) = Ψ(A ·B)
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To make our life easier in proving this theorem, we are going to briefly talk about smooth
simplicial homology :

Definition 3.7. If M is a smooth manifold, a smooth d-simplex in M is a smooth map σ : ∆d →
M .

Denote by C∞d (M) the subgroup of Cd(M) (where Cd(M) is the singular chain group of M ,
generated by the continuous singular d-simplices in M) that is generated by smooth simplices.
Elements of this group are called smooth chains. The boundary of a smooth simplex is a smooth
chain, so we have a boundary map

∂ : C∞p (M)→ C∞p−1(M)

and we can define the pth smooth singular homology group of M to be the quotient group

H∞p (M) := ker(∂p)/ Im(∂p+1)

(cf. [Lee93], p. 416 f.)

The following theorem will allow us to assume elements of Hd(M) to be in H∞d (M) and thus
to be represented by smooth cycles. We will state it without proof here – it can be looked up in
[Lee93], where it is Theorem 16.6:

Theorem 3.9. For any smooth manifold M , the map

i∗ : H∞d (M)→ Hd(M)

induced by the inclusion is an isomorphism.

�

So for an element A ∈ Hd(M), there is a smooth cycle
∑N
i=1 cifi such that i−1

∗ (A) ∈ H∞d (M)

is represented by
∑N
i=1 cifi according to Theorem 3.9, where ci ∈ Z (we can assume without loss

of generality that ci = ±1) and fi : ∆d →M are smooth maps. This will allow us to assume in
our construction of Ψ that we are dealing with homology classes represented by smooth chains.

The proof of Theorem 3.8 will be divided into two Lemmata: First we will construct a
d-dimensional pseudocycle from a smooth integral d-cycle, and then we will show that under this
construction, homologous smooth cycles will lead to bordant pseudocycles.5

One more remark on notation: We will think of ∆d as the convex hull of (d + 1) points
p0, . . . , pd; and denote by ∆d

pk
the (d − 1)-simplex obtained by taking the convex hull of these

same points with pk removed.

Lemma 3.10. If M is a smooth manifold, every integral d-cycle in C∞d (M) determines an
element of HΨ

d (M).

Proof. First, let us introduce some sets associated to a singular d-chain γ =
∑N
i=1 cifi. We define

Sγ :=

N∐
j=1

{j} × ci∆d

5The proofs of these lemmata are adapted from [Zin08], where they are Lemma 3.2 and 3.3.
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and

f̃ : Sγ →M

f̃(j, t) = fj(t)

so that Sγ is the set of copies of the d-simplices that can be thought of as the domains of the
maps fi. Also, define

Bγ :=
∐

0≤j≤N
0≤k≤d

{j} × cj(−1)k∆d
pk

the disjoint union over the (d−1)-dimensional boundary faces of these simplices. Let π2 : Bγ → ∆d

be the projection onto the second coordinate.
In order to construct a pseudocycle, we want to turn the simplices in Sγ into smooth oriented

manifolds with boundary and glue them together to form a smooth oriented manifold without
boundary. The problem is that for d ≥ 2, the points in the (d − 2)-skeleton of ∆d do not have
neighborhoods diffeomorphic to an open subset of Hd. On the upside, however, all points in
∆d not in the (d − 2)-skeleton are either in the interior of ∆d or in the interior of the (d − 1)-
dimensional boundary faces, and have neighborhoods that are disjoint from the (d− 2)-skeleton
and straightforwardly diffeomorphic to open subsets of Hd; so we get a smooth manifold by
removing the (d− 2)-skeleton from ∆d.

Whether we remove the (d−2)-skeleton first, and glue afterwards – as is done in [Wen18] – or
whether we glue first and then remove the (d− 2)-skeleton as [Zin08] should make no difference
for the resulting space. Here, we are going to take the latter route, which goes as follows:

If γ is a cycle, ∂γ =
∑N
i=1 ci∂fi = 0, so the disjoint components of Bγ cancel in pairs, i.e.

there is a continuous, orientation-reversing bijection

ϕ : Bγ → Bγ

(which can also be viewed as a map Sγ → Sγ by a construction along the lines of [Zin08], p.
2747) such that for all 0 ≤ j ≤ N and 0 ≤ k ≤ d, there are 0 ≤ l ≤ N and 0 ≤ m ≤ d such that:

ϕ((j,∆d
pk

)) = (l,∆d
pm)

with ϕ mapping the boundary face (j,∆d
pk

) to that which cancels it in
∑N
i=1 ci∂fi via the natural

identification of (d− 1)-simplices. Then

ϕ((j,∆d
pk

)) = (l,∆d
pm) =⇒

(
ϕ((l,∆d

pm)) = (j,∆d
pk

) ∧ cl = (−1)k+m+1cj
)

Note that ϕ induces a smooth map on the interiors of the boundary faces.
Since ϕ identifies cancelling boundary faces, we have

f̃|Bγ ◦ ϕ = f̃|Bγ

Now define the topological space

V ′ :=

N∐
j=1

{j} ×∆d

/
((j, t) ∼ ϕ((j, t))) .
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and let π be the quotient map

π :

N∐
j=1

{j} ×∆d → V ′. (3.4)

Since it still contains the (d− 2)-skeletons, V ′ is not smooth for the reasons described above;
to get a smooth manifold, we put

V := V ′ − π

 N∐
j=1

{j} × Y


where Y is the (d− 2)-skeleton of ∆d. Since V ′ is compact, Ωf̃ ⊂ f̃(V ′ − V ). But V ′ − V is the
union of the (d− 2)-skeletons, and thus has dimension d− 2, which means that

dim Ωf̃ ≤ d− 2. (3.5)

We have to verify that the so constructed V is indeed a smooth oriented manifold. If t ∈
int ∆d, then π({j}×int ∆d) is an open set around (j, t) which is naturally diffeomorphic to int ∆d.
So the critical points that need our special attention are those that are not in the interior of a
d-simplex, and are of the form

[(j, t)] = [ϕ((j, t))]

with t ∈ int(∆d−1); Say t is in int ∆d
p1 and ϕ({j}×∆d

p1) = {l}×∆d
p2 (in this case π2(ϕ((j, t)) ∈

int ∆d
p2). Then take open neighborhoods Udp1 ⊂ ∆d of int ∆d

p1 in ∆d (and analogously Udp2 ⊃ int ∆d
p2)

like described in [Zin08], section 2.1. Let

U := π
(
{j} × Udp1

)
∪ π

(
{l} × Udp2

)
.

Then U is an open neighborhood of [(j, t)] = [ϕ((j, t))] in V , which is homeomorphic to the
disjoint union Udp1 q U

d
p2 with int(∆d

p1) ⊂ Udp1 and int(∆d
p2) ⊂ Udp2 identified via ϕ. So U is an

open subset of Rk (cf. also [Zin08], part (2) of the proof of Lemma 3.2). So we get a natural
coordinate chart for U , and for any overlap with another, the transition map will be the identity
map on an open subset of int ∆d.

Since ϕ is orientation reversing, the induced orientations on the tangent spaces Tp(U) coming
from the two d-manifolds with boundary Udp1 and Udp2 will agree. So V is indeed a smooth
oriented manifold.

How about f̃ , is it smooth? Well, it is continuous for sure (cf. Theorem 22.2 in [Mun00]). So
we can use the fact that C∞S (V,M) is dense in C0

S(V,N) (Theorem 2.6 in chapter 2 of [Hir94])
to get a C∞-map f : V → M that is arbitrarily close to f̃ in the strong topology C0

S(V,M). In
particular, f can be chosen so as to have the same omega-limit set as f̃ , which by (3.5) completes
the proof that f : V →M is indeed a pseudocycle.

Lemma 3.11. Under the construction of Lemma 3.10, homologous d-cycles give bordant pseu-
docycles.
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Proof. Say we have smooth chains

γ0 =

N0∑
i=1

c
(0)
i f

(0)
i ∈ C∞d (M), γ1 =

N1∑
i=1

c
(1)
i f

(1)
i ∈ C∞d (M)

and γ2 =

N2∑
i=1

c
(2)
i f

(2)
i ∈ C∞d+1(M)

such that

∂γ2 = γ1 − γ0. (3.6)

Let (V ′i , Vi, f
(i))), i = 0, 1 be the manifolds and maps that the construction in Lemma 3.10

associates to γ0 and γ1.
We would love it if the manifold Ṽ ∗ obtained by performing the constructions of Lemma

3.10 on γ2 would already be the desired bordism between V0 and V1; unfortunately, though,
things are not quite as simple. The boundary of Ṽ ∗ is not V1 q −V0. For if we drop the
((d+ 1)− 2)-dimensional boundary faces from the simplices in the domain of γ2’s maps, the
boundary

∂Ṽ ∗ = Ṽ1 q−Ṽ0

will be lacking the (d− 1)-dimensional boundary faces of the simplices that we glue together to
get V1 and V0. To mitigate this, we will form a new manifold Ṽ by attaching two collars,

Ṽ0 ⊂ [0, 1]× V0 and Ṽ1 ⊂ [0, 1]× V1,

to Ṽ ∗ along its boundary components, Ṽ0 and Ṽ0.
This is how we do it, in detail:
Because of (3.6), the set Bγ2 assembling the boundary faces of the simplices that make up

the domains of the maps in γ2 can be partitioned into three sets:
First, a set B∗γ3 such that there exists ϕ∗ : B∗γ2 → B∗γ2 like the ϕ described in the proof

of Lemma 3.10, mapping cancelling boundary faces to each other in a way that restricts to a
diffeomorphism on their interiors.

Then, two sets B(i)
γ2 , i = 0, 1, defined via

B̂(i)
γ2 := {{j} ×∆d+1

pk
⊂ Bγ2 | ∃({l} ×∆d) ∈ Sγi : f

(i)
l = f

(2)
j |∆d

pk

and c(2)
j = (−1)kc

(i)
l }

B(i)
γ2 :=

∐
{j}×∆d+1

pk
∈B̂(i)

γ2

{j} ×∆d+1
pk

B̂
(i)
γ2 is the set of boundary faces of smooth singular simplices in γ2 that are identified with smooth

singular simplices in γi. And B
(i)
γ2 is simply the disjoint union over the sets that are the elements

of B̂(i)
γ2 .
There are maps ϕ(i) : Sγi → B

(i)
γ2 , i = 0, 1 which take {j} ×∆d to that simplex in B(i)

γ2 which
is its appearance in ∂γ2 (these maps exist because γ1 − γ0 = ∂γ2)
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Now, define

Ṽ ′ :=

N2∐
j=1

{j} ×∆d+1 q
∐
i=0,1

{i} × I × V ′i

/∼ , where (3.7)

(j, t) ∼ ϕ ∗ ((j, t)) ∀j ∈ {1, . . . , N2}, t ∈ ∆d+1 (3.8)

(i, 1− i, π(k, t)) ∼ ϕ(i)(k, t) ∀i ∈ {0, 1}, 1 ≤ k ≤ Ni, t ∈ ∆d (3.9)

(where π is the projection map (3.4))
and let

π̃ :

N2∐
i=1

{j} ×∆d+1 q
∐
i=0,1

{i} × I × V ′i → Ṽ ′

be the quotient map. Now let

Ṽ := Ṽ ′ − π̃

N2∐
j=1

{j} × Ỹ q
∐
i=0,1

{i} × I × (V ′i − Vi)


where Ỹ is the (d − 1)-skeleton of the (d + 1)-simplex ∆d+1 and (V ′i − Vi) is the union of the
(d − 2)-skeletons of the simplices that were glued together to make V ′i . Note that because of
the identification (3.9), the copy of V ′i that is found at {i} × {1 − i} × V ′i loses not only its
(d− 2)-skeleton, but its (d− 1)-skeleton.

The map f̃ : Ṽ →M shall now be given by the disjoint union of the maps f (2)
j : ∆d+1 →M

on Ṽ ∩
(∐N2

j=1{j} ×∆d+1
)/
∼ , and by f̃((i, s, x)) = f (i)(x) on the rest of Ṽ . That this map is

well defined and continuous is verified analogously to the proof of Lemma 3.10.
To see that Ṽ is a smooth oriented manifold with ∂Ṽ ≈ V1−V0, consider how it is the product

of gluing together three components:
The space

Ṽ ∗ := π̃

N2∐
j=1

{j} × (∆d+1 − Ỹ )


is a smooth oriented manifold by the same arguments as in the proof of Lemma 3.10, and its
boundary is

∂Ṽ ∗ ≈
∐
i=0,1

B(i)
γ2

For i = 0, 1, the space

Ṽi := Ṽ ∩ π̃({i} × I × V ′i ) ≈ I × Vi − {1− i} ×
Ni⋃
j=1

π({j} × (∆d − int ∆d))

(subtracting (∆d− int ∆d) at one end is the same as removing the (d− 1)-skeleton), is a smooth
oriented manifold with boundary by the proof of Lemma 3.10; and its boundary is

∂Ṽi ≈ (−1)i+1({i} × Vi)q (−1)i

{1− i} × Ni⋃
j=1

{j} × int ∆d


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with f̃ restricting to a smooth map on Ṽi and on Ṽ ∗.
Ṽ is obtained by gluing these three (d + 1)-manifolds together along components of their

boundaries via the map

{1− i} ×
Ni⋃
j=1

{j} × int ∆d → B(i)
γ2

((1− i), j, t) 7→ ϕ(i)(j, t)

Since this overlap map is orientation reversing (and, again, by similar arguments as in the proof
of Lemma 3.10), this identification produces a smooth oriented manifold, whose boundary is

∂Ṽ = π̃({1} × {0} × V1)q−π̃({0} × {1} × V0) ≈ V1 q−V0

The map Ψ : Hd(M)→ HΨ
d (M) defined according to Lemma 3.10 is clearly a homomorphism:

In both the Pseudocycle and Homology Groups, addition can be viewed as taking the disjoint
union.

Now, let’s prove the properties (1) and (2) from Theorem 3.86.
Assume A ∈ Hd(M) can be realised as A = f∗[V ], where [V ] is the fundamental class of a

d-dimensional closed oriented manifold and f : V →M is smooth. Then what is Ψ(f∗[V ])?
We know that V , since it is a smooth manifold, admits a triangulation; so we can view it

as a simplicial complex, and its fundamental class as being represented by a smooth singular
cycle

∑
cigi with ci = ±1 and gi being a diffeomorphism from ∆d to one of the simplices in said

simplicial complex for every i.
Then f∗[V ] ∈ Hd(M) will be represented by

∑
ci(f ◦ gi), and to calculate Ψ(f∗[V ]), we will,

as described in the proof of Lemma 3.10, glue together a manifold Ṽ based on
∑
ci(f ◦ gi). The

so glued manifold can be naturally identified with the complement of V ’s (d− 2)-skeleton in V ,
and we get a pseudocycle

f̃ = f|Ṽ : Ṽ →M

which we can recognize to be bordant to the pseudocycle f : V →M if we use the collar-gluing
technique from the proof of Lemma 3.11 to glue collars [−1, 0]× Ṽ and (0, 1]× V together.

So

Ψ(f∗[V ]) = [f̃ ] = [f ]

which concludes the proof that Ψ has property (1).
For property (2), recall that Thom’s Theorem (as stated for example in footnote 36 on page

186 of [Wen19]) says that for any class A ∈ Hd(M), there exist a closed oriented d-manifold V ,
a smooth map f : V →M and a positive integer m ∈ Z+ such that

mA = f∗[V ]

So let A,B ∈ H∗(M) be homology classes, and choose suitable integers, manifolds and maps
such that

mA = f∗[V ]

nB = g∗[W ].

6These proofs follow p. 152 f. in [Wen18].
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Then, using bilinearity of the intersection product, and the fact that Ψ is a homomorphism, we
get

Ψ(A ·B) =
Ψ(nA ·mB)

nm
=

Ψ(f∗[V ] · g∗[W ])

nm
.

With some standard results from intersection theory (§VI.11 in [Bre03], cf. [Wen18], p. 152) we
can go on to assert:

=
[f ] · [g]

nm
=

Ψ(f∗([V ])) ·Ψ(g∗([W ]))

nm
=

Ψ(mA) ·Ψ(nB)

nm
= Ψ(A) ·Ψ(B)

�

3.4.2 Outlining the Idea of a Homomorphism Φ : HΨ
d (M)→ Hd(M)

We will conclude this thesis by briefly talking about the homomorphism in the other direction,
taking pseudocycles to integral cycles. We will not discuss a thorough proof that this homomor-
phism is well defined, as we did for Ψ in the previous section, but confine ourselves to trying
to get an intuition of the idea behind the construction of this homomorphism, and paint both
the construction and the proof of its well-definedness in rather broad strokes. A more detailed
and rigorous discussion of this topic can be found in [Zin08], section 3.2; Zinger also proves that
the compositions of Φ and Ψ are the respective identity maps, and that HΨ

∗ (M) and H∗(M) are
thus indeed isomorphic.

One proposition that is necessary for the construction of the homomorphism from HΨ
d (M)

to Hd(M) is the following one in [Zin08], where can be found as Proposition 2.2:

Proposition 3.12. If h : X → Y is a smooth map and W is an open neighborhood of a subset
A of Im(h) in Y , there exists a neighborhood U of A in W such that

Hl(U) = 0 if l > dimX

This is useful in the construction of integral cycles from pseudocycles, since it tells us that, if
we have a d−pseudocycle f : V →M and its associated map e : N →M where dim(N) ≤ d− 2
and Ωf ⊂ e(N), we get for any open neighborhood W of Ωf ⊂ e(N) in M a neighborhood
U ⊂W of Ωf such that

Hl(U) = 0 if l > d− 2.

That is, a neighborhood U of Ωf such that the long exact sequence of the pair (M,U),

. . .→ Hd(U)︸ ︷︷ ︸
=0

i∗→ Hd(M)
j∗→ Hd(M,U)

∂→ Hd−1(U)︸ ︷︷ ︸
=0

→ . . . ,

gives us a natural isomorphism

j∗ : Hd(M)→ Hd(M,U) (3.10)

that will turn out to be useful later on.
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We define a subset K = V − f−1(U); K will be a compact subset of V . Let W be an
open neighborhood of K in V such that W is a compact manifold with boundary. Then ∂W is
contained in U . W inherits an orientation from V , so we get a fundamental class

[W ] ∈ Hd(W,∂W )

Furthermore, f|W : (W,∂W ) → (M,U) is a map of pairs and induces a homomorphism on
homology

f∗ : Hd(W,∂W )→ Hd(M,U) (3.11)

and we will set

[f ] = f∗[W ] ∈ Hd(M,U) ∼= Hd(M)

It remains to be shown that the homology class [f ] is independent of the choice of W ,
independent of the choice of U and that two bordant pseudocycles determine the same homology
class.

To see that [f ] is independent of the choice ofW , letW ′ be another choice such thatW ⊂W ′.
For a triangulation on (∂W ) ∪ (∂W

′
), there exists a triangulation of W

′
which extends that

triangulation (according to §16 in [Mun84]). Thus we see that the two cycles f∗[W ] and f∗[W
′
]

in Hd(M,U) will differ only by singular simplices lying in U , and thus determine the same
element in Hd(M,U).

If U ′ ⊂ U is another choice of the set U , then the isomorphism (3.10) can be split into two
isomorphisms

Hd(M)
j(1)∗→ Hd(M,U ′)

j(2)∗→ Hd(M,U)

and the homomorphism (3.11) is the composition

Hd(W,∂W )
f ′∗→ Hd(M,U ′)

j(2)∗→ Hd(M,U)

So the homology class we get inHd(M) if we choose U ′ is the same one that we get if we choose U .

Now, let

f0 : V0 →M, f1 : V1 →M

be two bordant pseudocycles and

f̃ : Ṽ →M

the bordism between them, i.e. ∂Ṽ = V1 q −V0 and f̃|Vi = fi for i = 0, 1. Then we get, as
discussed, open neighborhoods of their respective omega limit sets, Ωfi ⊂ Ui and Ωf̃ ⊂ Ũ such
that

Hl(Ũ) = 0 l > d− 1

Hl(Ui) = 0 l > d− 2.

We then learn from the long exact sequence of H∗(M, Ũ),

. . .→ Hd(Ũ)︸ ︷︷ ︸
=0

→ Hd(M)→ Hd(M, Ũ)→ . . . ,
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that the map Hd(M)→ Hd(M, Ũ) is injective. It is equal to the composites

Hd(M)→ Hd(M,U0)
i(0)∗→ Hd(M, Ũ)

Hd(M)→ Hd(M,U1)
i(1)∗→ Hd(M, Ũ)

So if the homology classes [f0], [f1], mapped from Hd(M,Ui) into Hd(M, Ũ) by the homo-
morphism induced by inclusion, are equal, this will tell us that they are equal in Hd(M) and we
are done.

The proof that i(0)
∗ [f0] and i(1)

∗ [f1] are equal in Hd(M, Ũ) relies on the fact that it is possible
to choose a triangulation of Ṽ which extends some triangulations on its boundary components
Vi, i = 0, 1 that in turn extend orientations on the sets ∂W i, such that subcomplexes triangulating
W 1 and W 2 are the boundary of a finite subcomplex containing Ṽ − f̃−1(Ũ) in its interior. A
detailed and rigorous discussion of this would demand a lot more algebraic topology, for which
this thesis is not the proper place. What is the proper place for it is [Zin08], where it can be
found in sections 2.3 and 3.2.
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